|
Lysogeny, or the lysogenic cycle, is one of two cycles of viral reproduction (the lytic cycle is the other). Lysogeny is characterized by integration of the bacteriophage nucleic acid into the host bacterium's genome or formations of a circular replicon in the bacterium's cytoplasm. In this condition the bacterium continues to live and reproduce normally. The genetic material of the bacteriophage, called a prophage, can be transmitted to daughter cells at each subsequent cell division, and a later event (such as UV radiation or the presence of certain chemicals) can release it, causing proliferation of new phages via the lytic cycle. Lysogenic cycles can also occur in eukaryotes, although the method of DNA incorporation is not fully understood. The distinction between lysogenic and lytic cycles is that the spread of the viral DNA occurs through the usual prokaryotic reproduction, while the lytic phage is spread through the production of thousands of individual phages capable of surviving and infecting other cells. The key difference between the lytic cycle and the lysogenic cycle is that the lysogenic cycle does not lyse the host cell. Phages that replicate only via the lytic cycle are known as virulent phages while phages that replicate using both lytic and lysogenic cycles are known as temperate phages.〔 In the lysogenic cycle, the phage DNA first integrates into the bacterial chromosome to produce the prophage. When the bacterium reproduces, the prophage is also copied and is present in each of the daughter cells. The daughter cells can continue to replicate with the prophage present or the prophage can exit the bacterial chromosome to initiate the lytic cycle.〔 ==Bacteriophages== Bacteriophages are viruses that infect and replicate within bacteria. Temperate phages (such as lambda phage) can reproduce using both the lytic and the lysogenic cycle. Via the lysogenic cycle, the bacteriophage's genome is not expressed and is instead integrated into the bacteria's genome to form the prophage. Since the bacteriophage's genetic information is incorporated into the bacteria's genetic information as a prophage, the bacteriophage replicates passively as the bacterium divides to form daughter bacteria cells.〔 In this scenario, the daughter bacteria cells contain prophage and are known as lysogens. Lysogens can remain in the lysogenic cycle for many generations but can switch to the lytic cycle at any time via a process known as induction.〔 During induction, prophage DNA is excised from the bacterial genome and is transcribed and translated to make coat proteins for the virus and regulate lytic growth.〔 The model organism for studying lysogeny is lambda phage. Prophage integration, maintenance of lysogeny, induction, and control of phage genome excision in induction is described in detail in the lambda phage article. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「lysogenic cycle」の詳細全文を読む スポンサード リンク
|